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LETTER TO THE EDITOR 

Coulomb oscillations of the conductance in a laterally 
confined heterostructure 

L I Glazmanii: and R I Shekhter9 
t Institute of Theoretical Physics, Chalmers University of Technology, S-412 96, 
Giiteborg, Sweden 
B Institute for Low Temperature Physics and Engineering, 
Ukranian SSR Academy of Sciences, Kharkov, USSR 310000 

Received 13 June 1989 

Abstract. We predict a new type of conductance oscillations in a GaAs heterostructure with 
a proposed strip-like gate with a hole. Such a gate defines a conducting dot (under the hole) 
in an otherwise depleted region of a two-dimensional electron gas. The oscillations are 
caused by discrete changes of the charge of the dot as the gate voltage is varied. We show 
that for low temperatures, T s e2/2C, the conductance as a function of gate voltage consists 
of a series of peaks with a period AV, - e /C (here Cis the capacitance of a dot). A distinct 
feature of the predicted oscillations (in comparison with the quantum ballistic interference 
phenomena) is the weak dependence on magnetic field and carrier scattering. 

The considerable present attention to ballistic transport in small systems is connected 
with a recently developed method for electrostatic confinement of the two-dimensional 
electron gas (2DEG) in GaAs-based heterostructures. This confinement is provided by a 
gate, the size and shape of which determines the geometry of the barriers for the ZDEG. 
Using appropriate gate structures a type of tunable microconstriction can be created. 
These have enabled one to discover fundamental conductance steps caused by quanti- 
sation of the transverse motion of an electron in the microconstriction [ 1,2].  Recently [3] 
the possibility of creating disconnected structures was demonstrated. In these structures 
electrons are localised in an area inside a ring-shaped potential barrier (figure 1). The 
presence of this barrier blocks the charge relaxation processes and leads to an increased 
role for Coulomb correlation phenomena in the electron transport process. The sub- 
micron size of the localisation area, R2,  makes the discrete nature of the electronic 
charge important. We show that the discreteness results in a new type of conductance 
oscillation. These oscillations are related not to the spatial quantisation of electron states 
but to the Coulomb energy (of order e2/&R).  In contrast to the interference phenomena, 
they are not destroyed by electron scattering and are much less sensitive to a magnetic 
field. Coulomb phenomena should be taken into account even in a clean sample with a 
size, R ,  that is larger than the effective Bohr radius, uB, because the period of oscillations 
is determined mainly by the charging energy (instead of the spatial quantisation). 

A negative gate bias VG, figure l (u) ,  leads to the creation of a tunnel structure with 
a conducting dot separated from the ZDEG in leads, figure l(b).  Simultaneously a finite 
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Figure 1. (a )  The gate geometry and ( b )  the 
geometry of a dot surrounded by the depletion 
area. 

V ,  lead to a potential difference between the dot, I ,  and the leads, 1 ,2 ,  figure l(6). This 
difference forces some of the electrons to leave the dot and hence the dot acquires an 
excess charge. However, the only discrete changes of the charge are possible, i.e. the 
dependence of the excess charge, Q ,  on the vottage VG is of a step-like type (figure 2). 
At the points of discontinuity of the function Q(VG), a charge degeneracy occurs. The 
change of the number of electrons in a dot by one does not alter the Coulomb energy 
[4,5]. This degeneracy opens up a channel for unactivated transport of electrons through 
a dot. For other values of VG changes of the dot charge and electron transport occur only 
as activated processes?. The result is a system of peaks in the conductance G(VG) 
corresponding to steps in the Q ( V G )  function. 

Figure 2. The dependence of an excess charge 9 
on the dot as a function of the gate voltage V ,  
under T = 0; n is an integer number. 

The Coulomb energy of a dot can be written as 
E,(y?) = Q2/2C + QQ,. (1) 

Here Q = ne is the discrete charge of a dot, Q, is the potential of the dot produced by the 
charges of surrounding conductors (the gate and the leads, figure l), C-' is a diagonal 
element (associated with the dot) of the inverse capacitance matrix akl [6]. We shall take 
the potential of both leads to be zero in the absence of a current. For this gauge the 
voltage Q, is proportional to the gate bias VG (all potentials are measured from the zero 
potential of the leads). The simplest relation between Q, and V ,  corresponds to the limit 
of large leads 

Q, = ffv, LY = (YGI/(YGG < 1 (2) - 0;  1 , 2 ,  G ,  I are the indexes of leads, gate and dot respectively). The dot is 
in electrical contact with the leads due to the tunnel coupling. Hence, the number of 
electrons in the dot is not fixed. In the absence of a current this number is given by an 
equilibrium distribution function 

Wo(n> = exp(-P&(Q,))/C exp(-P&(Q,)) p = 1/T. (3) 

It follows from equations (1)-(3), that the average value of the dot charge q = (Q) 
depends on the gate bias VG: 

q ( v G )  = 2 enW(n). (4) 

y = e2/2CT. (5  ) 

n 

The properties of the function q(vG) depend substantially on the parameter y :  

At high temperatures ( y  < 1) the sum in (4) can be replaced by an integral, and q ( v G )  = 
t We neglect here the possibility of quantum tunnelling via a virtual state with an extra carrier in the dot. 
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-aCV, + e/(ny)'i2 becomes a linear function of V,. In the opposite limit of low 
temperatures, y S 1, thermal fluctuations are suppressed by the Coulomb energy. For 
aCV, # (n + 4)e there exists only asinglecharging state with a minimum energy E , , ( q ) .  
This state is now the only one of importance in the sum over states n in (4). Under the 
condition aCV, = (n  + 4)e the degeneracy mentioned above occurs and two different 
charging states give the same minimum energy. For low temperatures, the function 
q( VG) takes the form: 

q(vG) = e[x] + l e  exp y({x)  - i)/cosh y ( M  - $1 x = aCV,/e. (6) 
In this equation [x], { x }  are the integer and fractional parts of x ,  respectively. It is obvious 
from (6) that the system periodically goes into the degenerate state as the value of q 
changes. Simultaneously, the conductance of the system becomes unactivated. 

The source-drain voltage applied between the terminals 1 , 2  causes a current flow 
through the dot. Under this condition, the charge distribution differs from that in 
equilibrium and the function W(n) should be determined from the stationary kinetic 
equation. This equation was derived in [4] using a tunnel Hamiltonian formalism that 
included transfer of an electron between the dot and both leads. This equation can be 
presented as follows: 

F,+1 - Fn = 0 

F n  = {glIf[En(v) - Efl-l(V) - eV11+ g21f[En(v) - En-l(v)  - ev21> W )  
- {glIf[En-l(v) - En(v)  + eV1l 

+ gzIf[En-l (v) - Efl(v) + eV21)Wn - 1) 

(7) 

where glI, g2, are tunnel conductances of the barriers separating the dot from the leads 
1 and 2; f ( x )  is a standard function for tunnelling problems that correspond to Fermi's 
Golden Rule: 

(8) 

In a stationary state, the incoming and outgoing currents through the dot do coincide 
and to calculate the current I it is sufficient to consider one element of the chain, e.g. 
the link I 4  2: 

I =  e-lg21 {f[En-l(Q)) - En(Q7) + eV2lWn - 1) 

- f[En(Q1> - En- l (v)  - eV2IWn)). 

n 

(9) 
We are interested in a linear conductance problem. That is why the functions f in (7) 
should be linearised with respect to V1 and V2.  Then a linear correction to the equilibrium 
function (3) can be determined from (7) and inserted in (9). These calculations bring a 
result for the conductance 

To be consistent with the linear expansion mentioned, we have to neglect the influence of 
the potentials V1, V20n the value q. Hence aisdetermined by (2). For high temperatures 
( y  4 l), (10) leads to the usual formula for two resistances in series: G(V,, T+ m) = 
G( V,, m) = (gl1g2J/(glI + g21). At low temperatures there is only one main contribution 
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in the sum (10). If aCVG # ( n  + 4)e, then the conductance is exponentially small, G = 
exp( - y ) ,  which corresponds to thermal activation over the Coulomb barrier. This 
barrier vanishes at &VG = (n  + &)e. Finally, for low temperatures ( y  % 1) one finds: 

Here { x }  is again the fractional part of x. The function G(VG) consists of a system 
of peaks at VG = V ,  = (e/aC)(n + i). The width of the peaks is proportional to the 
temperature. Fully analogous oscillations with a period of order e/C occur also in the 
dependence of conductance on source-drain voltage. This gives rise to a step-like 
behaviour of the current-voltage characteristics at the low temperatures, as was pre- 
dicted in [4]. 

In order to discuss the possibility to observe the Coulomb oscillations (1 1) in laterally- 
confined heterostructures, we have to mention the double role of the variations in VG. 
Besides periodically suppressing the Coulomb barrier (as indicated by ( l l ) ) ,  the gate 
bias also lowers the transparency of the barriers. Hence the oscillatory dependence of 
the conductance, G(VG), manifests itself as a series of peaks with exponentially decaying 
amplitudes (but the width of the peaks remains constant and is of order T) .  It is possible 
to estimate the decrease of the transparency when an oscillation period AVG = e/aCis 
added to a value of V,. Introduce the critical value V ;  of the gate voltage that 
corresponds to the creation of depleted areas between the dot and the leads. For 
lVGl > IV; 1 tunnel barriers for the electrons are formed. The height of these barriers is 
of order lV, - Val their widths are determined by the gate width?, 1,. Hence, the 
argument of the dominant exponential function in the expression for the tunnelling 
probability can be estimated as 

(m is an effective electron mass). The ratio G,/G,-l of amplitudes of the sequential 
peaks can be determined from (12) by using lV, - Va 1 = nAVG: 

Let us estimate the value of the period AVG for a submicron structure with a dot of 
typical size 2R = 0.3 pm. Approximating the shape of the dot by a circular disc, and 
using a = 1 one finds AV, -L 1 mV. For a minimum value lG - 800 A, equation (13) 
gives ln(G2/G1) = 1.6. 

The rapid decay of the amplitudes (13) demonstrates that although the Coulomb 
oscillations occur in a regime of tunnelling conductance, they require the deviation of 
the gate voltage VG from the critical value V ;  to be small. On the other hand, for ballistic 
transport in the range of under-critical gate voltages, 0 < 1V;I - lV,l < IV;], there is a 
possibility of oscillations of a different nature [3,7]. These are caused by resonant 
reflection of the electrons passing over the barrier. However, these oscillations should 
be destroyed when a relatively weak magnetic field is applied to the system. This feature 
determines the difference between these and the Coulomb oscillations. In this context, 
it is interesting to mention the experiment [3] with a geometry similar to that in figure 1. 
Two groups of oscillations superimposed on the monotonic increase of the resistance R 
as a function of V,  were observed [3]. The first group corresponds to a region with a 
relatively slow increase of R and the oscillations were easily suppressed by a magnetic 
field. For the second group (that corresponds to a rapid increase in R (VG) with VG) no 
sensitivity to a magnetic field was mentioned. A possible explanation of such a behaviour 
can be related to the Coulomb oscillations discussed in this Letter. 
i We assume that lG exceeds the distance between the gate plane and the plane of ZDEG. The latter is usually 
of order of 800 A. 

WG, T)/G(VG, m) = Y({x)  - I)/sinh 2y({x) - 2 )  x = aCVG/e. (11) 

s - I G ( ~ ~ v G  - V ;  

ln(G,/G,-,) - (IG/aB)(a&aB/C)'/2[n1/2 - ( n  - 1)''2]. 

(12) 

(13) 
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In conclusion, we have studied the dependence of the conductance, G, on the gate 
voltage, V,, for a disconnected 2~ electron system produced by a strip-like gate with a 
hole in it (figure 1). This dependence reveals an oscillatory pattern in a region where V ,  
slightly exceeds a critical value necessary for the formation of a quantum dot. We argue 
that the period of this oscillatory pattern is determined by charging phenomena rather 
than by spatial quantisation. A weak dependence on the magnetic field should be a 
characteristic feature of these oscillations. 

One of the authors (LG) would like to acknowledge the hospitality of the Institute of 
Theoretical Physics, Chalmers University of Technology. He is especially indebted to 
Dr Mats Jonson for his help. 
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